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Abstract: Wildlife practitioners concerned with midcontinent mallard (Anas platyrhynchos) management in the Unit-
ed States have instituted a system of adaptive harvest management (AHM) as an objective format for setting har-
vest regulations. Under the AHM paradigm, predictions from a set of models that reflect key uncertainties about
processes underlying population dynamics are used in coordination with optimization software to determine an
optimal set of harvest decisions. Managers use comparisons of the predictive abilities of these models to gauge the
relative truth of different hypotheses about density-dependent recruitment and survival, with better-predicting
models giving more weight to the determination of harvest regulations. We tested the effectiveness of this strategy
by examining convergence rates of “predictor” models when the true model for population dynamics was known
a priori. We generated time series for cases when the a priori model was 1 of the predictor models as well as for
several cases when the a priori model was not in the model set. We further examined the addition of different lev-
els of uncertainty into the variance structure of predictor models, reflecting different levels of confidence about
estimated parameters. We showed that in certain situations, the model-selection process favors a predictor model
that incorporates the hypotheses of additive harvest mortality and weakly density-dependent recruitment, even
when the model is not used to generate data. Higher levels of predictor model variance led to decreased rates of
convergence to the model that generated the data, but model weight trajectories were in general more stable. We
suggest that predictive models should incorporate all sources of uncertainty about estimated parameters, that the
variance structure should be similar for all predictor models, and that models with different functional forms for
population dynamics should be considered for inclusion in predictor model sets. All of these suggestions should
help lower the probability of erroneous learning in mallard AHM and adaptive management in general.
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As articulated by Walters (1986), adaptive man-
agement provides a framework through which
various forms of uncertainty about wildlife and
fisheries populations are explicitly incorporated
into the formulation of management decisions.
In 1995, the U.S. Fish and Wildlife Service
embraced adaptive management as an objective
method for regulating the harvest of midconti-
nental mallards (U.S. Fish and Wildlife Service
2001). Federal and state waterfowl biologists per-
ceived adaptive management as an impartial tool
for pursuing the goal of maximizing cumulative
harvest over time (Nichols 2000).

Under this adaptive management paradigm,
researchers gain insight into the dynamics of mal-
lard populations by comparing the predictive
abilities of candidate models that express differ-
ent hypotheses about population dynamics
(Johnson et al. 1993, 1997, 2002; Nichols et al.
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1995; Williams et al. 1996). Johnson et al. (1997)
outlined 4 such predictor models used to express
combinations of different hypotheses regarding
survival (compensatory vs. additive mortality)
and reproduction (strongly vs. weakly density
dependent) in mallards. In an attempt to inte-
grate further uncertainty, modelers have emulated
random environmental variation, partial harvest
control, and imprecision of key population para-
meter estimates. All such uncertainty sources are
included in model predictions, such that each
predictor model generates a distribution of pop-
ulation sizes that could result from a given set of
harvest regulations. The relative credibility of
each model can then be updated every spring
according to how well its predictions match
observed population size, through use of an
empirical probability distribution (U.S. Fish and
Wildlife Service 2001). Relative credibilities, in
the form of model weights, are used to determine
an optimal harvest strategy using a backward iter-
ation stochastic dynamic programming (SDP)
algorithm (Lubow 1995, Johnson et al. 1997).
Learning, as such, occurs as model weights for 1
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of the predictor models converge toward 1,
implying that the hypotheses behind the given
model have best explained population dynamics
over time relative to the other models evaluated.
Such a model then becomes the primary basis for
determining annual harvest regulations.

If this formulation of adaptive management is
to work well, at least 2 key requirements must be
met. First, if 1 of the models in the predictor
model set captures the dominant mechanisms of
population dynamics (what we shall call a “true”
model), then model weights should converge to
that model over time. Williams et al. (1996) exam-
ined learning rates of 2 of the mallard predictor
models under different sets of harvest regula-
tions and different levels of monitoring and har-
vest variation but did not evaluate the convergence
properties of the full model set. In theoretical
work on general ecological time series, Jost and
Arditi (2000) explored model identification of
predator—prey processes when the data included
observation and process errors. They found that
up to 15% of the time series resulted in misiden-
tification of the correct model. Similarly, Carpen-
ter et al. (1994) examined predator—prey model
discrimination in plankton time series when both
predictor and response variables were subject to
error. Even modest amounts of error caused
problems with model identification. Thus, the
convergence properties of the adaptive manage-
ment model set needs to be investigated.

Second, if the true model is not in the predic-
tor model set, then the optimal harvest strategy
generated through application of the mallard
adaptive management framework should be sim-
ilar to the optimal strategy for the true model.
The validity of this second requirement has
recently come under criticism. Runge and John-
son (2002) showed that different functional
forms used to express hypotheses of mortality
and reproduction in mallards can lead to quite
different optimal harvest strategies. This can
occur even if the functional forms predict similar
population values over the range of observed
data. This problem also has been well document-
ed in the field of fisheries stock assessment
(Hilborn and Walters 1992) and warrants a simu-
lation exercise to determine which predictor
models are favored when certain true models are
not in the model set.

From 1995 until 2001, certain components of
the mallard modeling process were considered
deterministic, and no uncertainty was incorporat-
ed for natural mortality, crippling loss, seasonal
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sex ratios, or model-specific recruitment func-
tions. While care is needed to avoid extraneous
compounding of sampling error, increasing the
amount of uncertainty in model components
may more accurately reflect our current knowl-
edge of the system.

We assessed the efficiency of model selection
for existing mallard population models when the
true data were simulated from an a priori model.
Given the obvious importance of previously for-
mulated models in this context, we first reviewed
the essential model structure underlying the 4
competing predictor models initially used in mal-
lard adaptive management (see Johnson et al.
1997 for further explanation). Next, we developed
several a priori models that could be used to sim-
ulate population dynamics. Specifically, we con-
sidered the 4 cases in which the a priori model
comes from the historical predictor model set, as
well as 2 cases when it did not. For the latter, we
used a logistic form of density dependence in
posthunting season mortality as an alternative
formulation of the compensatory mortality hypoth-
esis (Johnson et al. 1993, Runge and Johnson
2002), as well as a partial compensation model
for mortality (Caughley 1985, Conroy and Kre-
mentz 1990). We used these a priori models,
along with a decision rule for harvest based on
simulated observations of the system, to generate
time series of system states (Walters and Green
1997). Finally, we examined convergence rates
among historical predictor models when each a
priori model was used to generate the data. We
assessed the importance of the variance structure
of the historical predictor model set in achieving
convergence by considering different levels of
uncertainty about the system.

HISTORICAL MODELING PERSPECTIVE
System Dynamics

Population models for the midcontinent mal-
lard largely have focused on the timing of annu-
al surveys, which permit estimation of key popu-
lation parameters (Nichols et al. 1995, Smith
1995, Williams and Johnson 1995). In construct-
ing these models, researchers sought to econo-
mize on model components such that models
contain just enough biological structure to make
them useful to managers. Thus, modelers avoid-
ed extrapolating from sparse data or including
processes expected to have little effect on system
predictions. We followed the models and nota-
tion for system dynamics presented by Johnson et
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al. (1997) because as this formulation provided
the basis for adaptively managing mallards from
1995 to 2001. System transitions are given by

X

(+17

X+ F(X, H, z),

where X, represents system state at time { H,
denotes time-dependent harvests, z, represents
stochastic environmental effects between time ¢
and ¢+ 1, and F; specifies 1 of the models used to
approximate population and habitat dynamics.
In the particular case of midcontinent mallards,
system state can be reduced to Xl, or spring
population size of mallards in the midcontinent
survey area in year ¢, and X2, the number of
ponds in Prairie Canada in spring of year ¢
“Prairie Canada” is defined as strata 26-40 (J. A.
Dubovsky, U.S. Fish and Wildlife Service, person-
al communication) of the Breeding Waterfowl
and Habitat Survey (U.S. Fish and Wildlife Ser-
vice 2000) and comprises portions of southern
Alberta, Saskatchewan, and Manitoba.

Changes in population size traditionally have
been modeled as a function of mortality and
reproduction only. While a small amount of immi-
gration and emigration occurs, these are limited
because migration occurs largely within flyways
and individuals must change migration patterns
to move into or out of a different population. The
effects of immigration and emigration in midcon-
tinent mallards have been ignored by modelers
because the increased complexity resulting from
including these variables contributes little to accu-
rate predictions about system state (J. D. Nichols,
U.S. Geological Survey [USGS], personal com-
munication). Thus, model-specific transitions in
population size have been written as

4
Xll +1,s~ Xll,sq)i,t,s + yi,l,sq) 11,8
where (I)Z- s and (I)'l- . s Tepresent model, time, and
sex-dependent survival probabilities for adult
and juvenile mallards, respectively, and where

Yits gi(Xlt,s, X2),

is a model-dependent recruitment function. We
defined “recruitment” as the number of juvenile
mallards surviving until the fall harvest, even
though these individuals are assumed to function
as juveniles until they reach their first breeding
season. This definition is necessary because the
first information about juveniles comes from
adjusted age ratios of wings submitted by hunters
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(Cowardin and Blohm 1992). Note also that this
formulation of recruitment depends on both
adult population size and number of ponds. The
number of ponds in Prairie Canada is an impor-
tant component in determining the overall qual-
ity of mallard breeding grounds (Pospahala et al.
1974, Johnson et al. 1992).

The Johnson et al. (1997) Model Set

Johnson etal. (1997) identified 4 models for mal-
lard population dynamics that reflect structural
uncertainty about the processes of reproduction
and mortality. We let models S Rg, S R, ScRy;
and S,Ry, designate combinations of the com-
pletely compensatory (S.) and completely additive
(S,) mortality hypotheses with the weakly density-
dependent (Ry;) and strongly density-dependent
(Ry) recruitment hypotheses (U.S. Fish and Wild-
life Service 2001). These 4 models and their rela-
tive predictive abilities, constituted the basis for
mallard adaptive management from 1995 to 2001.

Mortality Hypotheses.—Despite decades of histor-
ical data from 1 of the best continental monitor-
ing systems in the world, considerable disagree-
ment remains about the appropriate model to
use for harvest mortality (Nichols 1991, Smith
and Reynolds 1992, Johnson et al. 1993, Nichols
et al. 1995). Absence of true statistical replica-
tion, lack of random assignment of harvest regu-
lations to different population sizes, and a variety
of other sources of uncertainty combine to limit
our ability to distinguish important relationships
(Nichols 1991, Nichols et al. 1995). Political pres-
sures also have limited the ability of wildlife man-
agers to learn about population dynamics through
experimentation with harvest regulations
(Nichols 2000). In practice, 2 extreme hypothe-
ses have been used to express uncertainty about
the correct form of harvest mortality. The addi-
tive hypothesis (S,) posits that annual survival
rates are strictly proportional to mortality
incurred during the hunting season. The com-
pensatory hypothesis (S.), on the other hand,
predicts that annual survival rates will be unaf-
fected when harvest rates are below a certain
threshold (Anderson and Burnham 1976). His-
torical tests for evidence of density dependence
in mallard survival have focused largely on these
models (e.g., Anderson and Burnham 1976,
Nichols et al. 1984, Smith and Reynolds 1992).
This dichotomy is somewhat artificial; the best-
approximating model for density-dependent sur-
vival is certainly somewhere in between these
extremes (Guthery 2002).
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Partly because of historical tradition and partly
because of uncertainty about the exact mechanism
for compensatory mortality, the functional forms
for additive and compensatory mortality have been
formalized in phenomenological models (Williams
et al. 1996, Johnson et al. 1997). Annual survival
is broken down into seasonal components,

’ 4
¢i,t,s = (XsBi,t,sY and ¢ i,t,s= Bi,t,sy’

where o is sex-specific adult summer survival,
B, ., and P’ are hunting season survival for
adults and young, respectively, and 7 is winter sur-
vival. The component for hunting season survival
is manipulated to express the compensatory and
additive hypotheses (Fig. 1). For the additive mor-
tality hypothesis, hunting season survival is given by

B, =1- h for adults,
T 1

1- ht’f for juveniles,
1-¢

and [}’

nts

where /4,  and /)  are time- and sex-dependent
harvest rates for adult and juvenile mallards, and
is crippling loss. For the compensatory hypothe-
sis, hunting season survival is given by

N h/s
1.0, if —=<l-oy
1—¢ ’
B, = for adults, and
h
1_ 1.5
h, .
#, zf s 1_(“{
ay l-¢
N h/ s
1.0, if —<Il-oy
1-¢ ’
B, = for juveniles.
-l hl,s
B h,
#, if IR l1-ay
oy 1-¢

Note that in this completely compensatory phe-
nomenological model, no mortality is assumed
for the hunting season unless the number of mal-
lards harvested exceeds the number that will die
due to natural causes during the rest of the year
(often up to 15% of the population).
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Fig. 1. Graphical representation of historically formulated com-
pensatory, additive, and partially compensatory mortality
hypotheses (Conroy and Krementz 1990, Williams et al. 1996)
for midcontinent mallards. For the additive model, harvest
mortality is strictly proportional to harvest rate, while the com-
pensatory model posits that harvest mortality is zero unless
harvest rate surpasses some threshold value. The partially
compensatory hypothesis we used was halfway between the
additive and compensatory models.

Reproductive Hypotheses.—]Johnson et al. (1997)
identified 2 models to represent hypotheses of
strongly density-dependent and weakly density-
dependent reproduction. They used Akaike’s
Information Criterion (AIC; Akaike 1974, Burn-
ham and Anderson 1998) to identify an appro-
priate model for recruitment and parameterized
the model differently (using a confidence ellipsoid
approach) to express the 2 recruitment hypothe-
ses. Population size and number of prairie ponds
in the spring were identified as important deter-
minants of fall recruitment. The 2 models for
recruitment, entering into the balance equations
in the form of fall age ratios, are given by

Ry, = 0.8249 - 0.0547 x 1076 X1, +0.1130
x 1076 X2,

for weakly density-dependent recruitment, and

R

= 1.1081 - 0.1128 x 107 X1, + 0.1460

x 1076 X2,

for strongly density-dependent recruitment, where
Wand S represent weak and strong density depen-
dence, respectively, and ¢ denotes time dependency.

Partial Harvest Control.—To address uncertainty
regarding the relationship between harvest regu-
lations and harvest rate, Johnson et al. (1997) fit
gamma distributions to adult male harvest rates
that were associated with particular periods of
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Fig. 2. Distributions of harvest rates associated with conserv-
ative, moderate, and liberal packages of harvest regulations
(Johnson et al. 1997) for midcontinent mallards.

restrictive, moderate, and liberal harvest regula-
tions (Fig. 2). These harvest packages correspond
to mean harvest rates of 0.09, 0.12, and 0.156,
respectively. Differential vulnerabilities to harvest
were calculated for juvenile males, juvenile
females, and adult females in relation to adult
males to determine their respective harvest rates.
Environmental Variation.—Johnson et al. (1997)
showed that the annual change in the number of
ponds in Prairie Canada could be modeled as

X2 -3,835,087.53 + 0.45X2, + 13,695.477,,

t+1°7
where 7, follows a normal distribution with mean
418 and variance 3,136. While some of the mathe-
matical features of this model are unrealistic (e.g.,
not restricting the number of ponds to be posi-
tive), the model has been shown to work well over
the range of observed data (Johnson et al. 1997).

Partial Observability.—Estimation of key popula-
tion parameters usually involves substantial sam-
pling error. We included observation error in
determining population size and number of
ponds in Prairie Canada each spring in the mod-
eling process, as well as stochastic change in par-
tial vulnerabilities to harvest. These errors have
been assumed to follow normal distributions
(U.S. Fish and Wildlife Service 2001).

Updating Model Weights.—Johnson et al. (1997)
suggested a method whereby regulatory decisions
would be based on the relative predictive abilities
of the 4 candidate population models, which can
be measured in the form of model weights. This
method follows the general approach described
by Walters (1986). The predictive abilities of the
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4 models were updated each year depending on
how well they performed in forecasting popula-
tion size. The mechanism for updating model
weights is based on Bayes’ theorem:

— li,/pz'(Xl/ 2 X11+])
RLp(X,X1,)

where the updated model weight (Z; ,, ;) depends
on the prior model weight (Z; ;) and the model
specific probability of observing the realized pop-
ulation size at time ¢+ 1 (p,(X1,, X1, ;).

Dynamic Optimization.—Given a set of model
weights characterizing knowledge of the system,
Johnson et al. (1997) used SDP (Lubow 1995) to
find state-dependent optimal harvest strategies.
Optimal solutions were obtained in accordance
with an objective function, which formalized the
goals of mallard management. While the exact
form of the objective function is beyond the
scope of this paper, it represents a compromise
between the dual goals of maximizing cumula-
tive harvest over an extended time frame and
keeping midcontinent mallard population size
above 8.1 million birds in the traditional breed-
ing survey area, a target established by the North
American Waterfowl Management Plan (U.S.
Department of the Interior and Environment
Canada 1986).

METHODS
Predictor Model Sets

We considered 3 sets of predictor models
assuming different levels of uncertainty about the
system. We used the Johnson et al. (1997) model
set and considered sources of variation corre-
sponding to:

Level 1—the original model set,

Level 2—the original model set, but including
additional variance associated with recruitment
predictions, and

Level 3—those described in Level 2, as well as
variance components associated with nonhunt-
ing season survival.

To introduce variation into the 2 recruitment
functions, we first computed a mean squared
error for each recruitment model (MSE;) by fit-
ting the models to observed data on recruitment,
population size, and number of Prairie Canada
ponds from 1970 to 1993. We then used estimates
of spring population size (X1,) and number of
spring ponds in Prairie Canada (X2,) to compute
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an (X’X)~! matrix. The variation of a single pre-
diction for each model was then computed as

V(predicted R;,) = [1 + X,(X'X)~' X{] x MSE,
where X, = [1 X1, X2,] (Steel et al. 1997) and

1 X11970 X2197O

X = 1 X11971 X21971

1 X1]993 X21993

For Level 3 uncertainty, we further introduced
variability by assigning a coefficient of variation
(CV) 0f 0.10 to nonhunting season survival sources.

Establishing A Priori Models

We first considered versions of the 4 models
established by Johnson et al. (1997) as possible a
priori models for population dynamics of mal-
lards. We assumed that the true population size
was determined stochastically according to the
Level 1 uncertainty structure but with a slight
modification to include stochastic variation in
recruitment at a given level of mallards and
ponds (i.e., process error). We used the models

Rg,=1.1081 - 0.1128 x 10~ X1, + 0.1460
x 1070 X2, + vg,

for strong density dependence, and

Ry, = 0.8249 - 0.0547 x 107 X1,+0.1130
X 1070 X2, + vy,

for weak density dependence, where vg, and vy,
represented process error for strongly and weakly
density-dependent recruitment, respectively. Val-
ues for vg, and vy, were determined at each time
step by simulating random normal variates with
mean zero and variances 0.0082 and 0.0059,
respectively (see Appendix A for derivation of
variances). While some restrictive assumptions
were needed to obtain distributions for recruit-
ment process error, we maintain that the impor-
tance of considering cases where the a priori
model has both more and less variability than the
predictor model set justified our approach.

We next considered cases where the a priori
model used to generate population dynamics was
not in the predictor model set. We considered a
logistic model for density-dependent mortality fol-
lowing the hunting season as an alternative articu-
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lation of the compensatory hypothesis (Johnson et
al. 1993, Runge and Johnson 2002), as well as a par-
tial compensation model for mortality (Caughley
1985, Conroy and Krementz 1990). While parame-
terizing these models with field data has been diffi-
cultin practice (Conroy and Krementz 1990, Runge
and Johnson 2002), we agree with Runge and John-
son (2002) that specifying the correct functional
form for population dynamics often may be more
important than precise parameter estimation. In
this context, we note that partial compensation
models do not specify a mechanism for density
dependence. Consequently, they fall victim to the
same flaws as the fully compensatory model when
determining an optimal harvest strategy (Runge
and Johnson 2002). Using a partial compensation
model, however, is illustrative in that it represents
the combination of hypotheses used in the cur-
rent mallard adaptive management paradigm.
Partial compensation hypotheses are not well
defined because any model intermediate between
the compensatory hypothesis and the additive
hypothesis could be termed partially compen-
satory (Conroy and Krementz 1990). Thus, the
choice of compensatory threshold and slope
parameters is arbitrary. From a management
standpoint, however, the value of selecting
between alternative models is greatest when their
optimal harvest strategies dictate different man-
agement actions (Walters 1986, Johnson et al.
1993, Williams et al. 1996). Therefore, we chose
parameters that placed the partially compensato-
ry model for mortality equidistant from both the
additive and compensatory models (Fig. 1).
Hunting season mortality was thus modeled as:

1 h/.s’ f h[.x <1
- 2 <l-a,
2(1-¢) 1-¢ Y
B =
_ h /
Uran) (b )y by
2oy 1-¢ l1-¢
for adults, and
h/’. 5 f h[’.x < 1
- , if —<l-aqa,
2(1-¢) 1-¢ Y
B =
- h h'
(eop) (B, ) 0 Be oyl
2oy 1-¢ l1-¢
for juveniles.
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Apart from the difference in mortality compo-
nents, true population sizes were generated the
same way as when the a priori model was 1 of the
models in the model set.

Density dependence is often cited as the domi-
nant mechanism for compensatory relationships
in wild populations (Johnson et al. 1993, Boyce et
al. 1999, Runge and Johnson 2002). Factors such
as migration distance, food availability, quality of
habitat, and predation rate may be affected by
population density (Johnson et al. 1992), and
hence may contribute to density-dependent
changes in mortality following the hunting sea-
son. We next considered a seasonally explicit
model for density dependence (Boyce et al.
1999) in the form of a logistic winter survival
model (Runge and Johnson 2002). In this model,
winter survival rates were assumed to be inversely
proportional to post-harvest population size.
Time- and sex-specific winter survival is given by

‘ 1+e—mr\ 1
A, =F[P]= |:S().s +{(8, — S0, )[T—r)]} oy
1+ o

5

with the constraints

m> iln 72(5“ ~9) +1], and
K (I)\' _SOA

¢ = iln(—d)" "S5k _py— 1) ,
5, =0

m 1 @
where o is sex-specific summer survival, F, is post-
harvest population size assuming the additive
model for hunting season survival, s;, and s,
specify sex-specific minimum and maximum sur-
vival rates outside the hunting season, ¢ is sex-
specific total annual survival rate in the absence
of harvest, and K determines the inflection point.
The shape parameter (m) determines the degree
of concavity in the relationship between post-har-
vest population size and winter survival.
Mechanistic models for density dependence, such
as this one, have been difficult to parameterize in
practice because of the lack of data. Nevertheless,
we explored whether such models could better rep-
resent reality than phenomenological models.
Other mechanistic models could have been consid-
ered in this context; for instance, density-depen-
dent models in which winter survival was a function
of wintering ground density (postharvest popula-
tion size divided by a measure of suitable winter
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habitat) or amount of available habitat (Guthery
1997) would have been viable alternatives. How-
ever, no field data on wintering ground habitat
conditions (e.g., number of ponds) were available.
Because of difficulties involved with parameter-
izing the logistic model from data, we added and
subtracted a CV of 0.2 from mean estimated sur-
vival outside of the hunting season to specify s,
and s for female and male mallards. We made
additional constraints for s; so that winter survival
could not take on values >1.0. The mean estimates
of survival were used to specify values for ¢. We
assumed summer survival was constant over time
for both sexes because large-scale monitoring data
had failed to produce firm evidence that density
dependence occurs during the summer at the
midcontinental scale (W. L. Kendall, USGS, and
D. I. MacKenzie, Proteus Research and Consult-
ing, unpublished data). Reasonable values for m
and k were chosen so that changes in winter sur-
vival due to high density would produce notice-
able effects after post-harvest population size ex-
ceeded 8 million individuals. Resulting logistic
equations differed only slightly for males and
females, so we used the intermediate model

1+e7
-

‘

—6
1 + £2000000

A, =.72+.28x

to represent density-dependent winter survival
for both sexes (Fig. 3).
Structure of Simulation

Generating True and Observed System States.—
Given an a priori model for population dynamics,

Winter survival rate

07 I L I L I I L I
0 2 4 6 8 10 12 14 16 18

Post-harvest population size (millions)

Fig. 3. Logistic model for seasonal winter survival of midcon-
tinent mallards following the harvest season as an alternate
form of the compensatory hypothesis.
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we generated a realized population size for the
spring of year ¢+ 1 that depended on population
size, number of prairie ponds, and harvest deci-
sion in year ¢ (Fig. 4). The annual number of
prairie ponds was simulated according to the
Markovian model (Johnson et al. 1997) but was
constrained to be >1 million to prevent negative
values. We then added simulated sampling error
to the simulated true population size and num-
ber of ponds to generate observed system states,
thus emulating annual spring surveys.
Automating Harvest Decisions.—In an effort to
mimic the process of adaptive management as
described in Johnson et al. (1997), we set simu-
lated harvest regulations according to a weighted
average of predictor model weights. In the real
world, harvest decisions from 1995 to 2001 were
made using SDP (Lubow 1995), but interfacing
SDP with MATLAB, the programming language
we used for simulation, presented difficulties. To
address this problem, we utilized the harvest
matrices presented in Johnson et al. (1997),
which specified optimal harvest packages for
each of the models S;Rq, S,Rq, S-Ry, and S, Ry,
given a particular value of observed ponds and
population size. We assigned indicators of zero, 1,
2, and 3 to the harvest regulation packages cor-
responding to closed season, conservative, mod-
erate, and liberal, respectively. We then obtained
annual harvest packages by using the most recent
model weights and associated optimal packages
in a weighted average, rounding to the nearest
integer, and using the package associated with

True system

Harvest Stochastic
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that integer. In general, the resulting simulated
harvest decision was given by

D= roun d( Ly + Ll + gy + L j
4 2

where /is model weight and d is the optimal har-
vest decision for each individual model. Possible
harvest strategies were d = 0 (closed season), d =
1 (conservative harvest), d = 2 (moderate har-
vest), and d = 3 (liberal harvest). In this manner,
model weights supporting the compensatory
mortality hypothesis will lead to more liberal har-
vest decisions than model weights supporting the
additive mortality hypothesis.

Generating Predictions.—We used parametric boot-
strapping to generate model-specific empirical dis-
tributions of predicted population size observa-
tions (U.S. Fish and Wildlife Service 2000). We
assumed normal distributions for each uncertainty
component (with the exception of harvest rates,
which we assumed to follow a gamma distribution).
For each iteration, random variates from each of
the uncertainty components were combined in
the modeling process to produce a single predicted
population size. For each model, we used 10,000
such iterations to approximate a random sample
from the predicted population size distribution.
We then used kernel density estimation to approxi-
mate the underlying probability density, using
normal kernels and assuming an optimal band-
width based on results from the normal distribu-
tion (Silverman 1986,
Simonoff 1996). Non-
parametric choices for
bandwidth are possible
(see Silverman 1986,
Simonoff 1996, Hazel-
ton 1999), but the requi-

A Priori

state decision variation model
time ¢ \ /
time ¢+ 1 True system
state
Partial Observed Predict next

observability system state

Harvest
decision

Fig. 4. Simulation structure describing the relationship between midcontinent mallard harvest
decisions, model predictions, and true and observed population sizes.

site computing time was
irreconcilable with the
sheer quantity of simula-
tions required. Underly-
ing probability densities
for predictive distribu-
tions were unimodal and
resembled normal distri-
butions, so we did not ex-
pect this to be a large
source of error. The rel-
ative probability (p,(X1,
X1,,,)) of observing pop-
ulation size X1, ,; at time

system state

Update model
weights
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t+ 1, given that model ¢is true, could then be ob-
tained by evaluating the observed population size
(XL, ,,) on the smoothed distribution for model .
Using these probability densities, model weights
were updated on a yearly basis. A uniform distri-
bution of predictor model weights was assumed
at the start of all simulations.

Number of Simulations.—Given an a priori
model, we used 4, 7, 10, and 13 million mallards
as initial values for population size and 1.5, 3.75,
and 6 million ponds as initial values for number
of prairie ponds. When the a priori model was in
the model set, combinations of initial values, in
addition to the 3 levels of assumed certainty and
4 possible a priori models, led to a total of 144
independent simulations. For the case when the
a priori model was not in the model set, we limit-
ed the number of uncertainty sources to Levels 1
and 2 to reduce computing time. Still, factoring
in different initial values for spring ponds and
population size, 2 possible recruitment models,
and 2 levels of uncertainty led to an additional 96
simulations. For each simulation, we used 50 iter-
ations of 50-year time series to provide replica-
tion in simulation. Total central processing unit
time for all simulations was approximately 800 hr
(34 days) on a 330 MHz Sun Ultrasparc 10 float-
ing point processor.

Analysis of Simulation

Convergence of predictor model weights to a
particular model was a somewhat elusive criteri-
on to define. In examining learning rates of 2
adaptive management models, Williams et al.
(1996) reported average model weights and asso-
ciated standard deviations after 8 years of simula-
tion time. Similarly, for cases in which the a priori
model was not in the model set, we described
average model weights and accompanying stan-
dard errors at landmarks of 3, 8, 15, 30, and 50
years of simulation time. For cases in which the a
priori model is in the predictor model set, we
reported average model weights as well as a mea-
sure of predictor model convergence. We
defined convergence to occur in an individual
iteration if the predictor model weight associated
with the a priori model surpassed 0.95. Mean
times to convergence were determined for col-
lections of simulation replicates that displayed
convergence within the 50-year time series. Once
convergence occurred, we further reported the
percentage of simulation time that a model’s
weight fell below the 0.95 threshold as a measure
of the strength and stability of convergence.
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RESULTS
Predictor Model Set

For the case when the a priori model was a vari-
ant of 1 of the 4 models in the model set, model
ScRy, converged the fastest, followed by models
S,Rg and S, Ry, (Fig. 5, Table 1). However, on
average, model SR did not exhibit stability with
regard to convergence. When model S.Rg was
used to generate time series, individual replica-
tions were characterized by shared or switching
model weight between models S,Rgand S, Ry
On average, S-Rgpredicted better, but the 2 mod-
els often predicted very similar population sizes
over the range of observed data (Fig. 6). The added
process error in the recruitment function of the
a priori model resulted in occasional true popu-
lation sizes outside the range of predicted popu-
lation sizes for level 1 uncertainty predictor mod-
els (Fig. 7). When this happened, other predictor
models rapidly gained model weight. This led to
“switching” model weights (Fig. 8A). Under in-
creased levels of uncertainty in the predictor model
set, changes in model weights over short time
periods were much less pronounced (Fig. 8B).

Partial Compensation

When the partially compensatory model for
survival was combined with the strongly density-
dependent recruitment model (model SpRg) to
generate true population sizes, predictor model
S Ry, frequently dominated harvest decisions,
with model S,Rg contributing somewhat as well
(Table 2). For both levels of predictor uncertain-
ty, model weights increased on average to around
0.94 for model S, Ry, and to approximately 0.06
for model S R¢. Standard errors for average
model weights were greater under Level 1 uncer-
tainty than under Level 2 uncertainty, indicating
a propensity for greater fluctuations in model
weight during individual replications. Neither
compensatory predictor model (S-Rg or S-Ryy)
contributed substantially to harvest decisions, with
model weights tending toward zero over time.

When partial compensation was combined with
weakly density-dependent recruitment (model
SpRy), predictor model S, Ry, continued to dom-
inate many harvest decisions, although model
ScRyy also garnered a substantial amount of model
weight. Average model weights were similar for
both levels of uncertainty (Table 2). Under Level 1
uncertainty, individual iterations were characterized
by extended periods of high model weights for 1 of
the 2 models, with rapid transitions in model weight
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Fig. 5. Average model weights over 50 years of simulation time of midcontinent mallard abun-
dance when the a priori model was in the model set. A priori models represent combinations
of compensatory (S) or additive (S,) mortality and strongly (Rg) or weakly (R,,) density-
dependent recruitment. Model weights are given for the model used to generate the data
under (A) Level 1 Uncertainty, (B) Level 2 Uncertainty, and (C) Level 3 Uncertainty.

following particularly bad predictions. This phe-
nomenon is reflected in high standard errors for
average model weights (Table 2). Under Level 2
uncertainty, neither model usually dominated
harvest decisions. Rather, time series were charac-
terized by shared model weight between predictor
models S Ry, and S Ry, Under the 2 levels of
uncertainty, neither of the models assuming
strongly density-dependent recruitment (S-Rgand
S,Rs) contributed substantially to harvest decisions
(i.e., model weight approaches zero over time).

Logistic Winter Survival

Combining logistic winter survival with strongly
density-dependent recruitment (model S;Rg) to
generate true population sizes favored predictor

decisions. Under both
levels of uncertainty, the
model weight for S, Ry,
approached 1 over time
(Table 3). However, Level
1 uncertainty did lead to
faster learning rates than
Level 2 uncertainty. The
mean spring population size for mallards under
all initial conditions and uncertainty sources was
approximately 9.26 million under logistic density
dependence.

Importance of Initial Conditions

The results illustrated thus far represent an aver-
aging across quite different initial conditions. Ini-
tial conditions on population size and prairie pond
numbers often influenced convergence times, but
sometimes differed depending on which a priori
model was used to generate time series. One obvi-
ous trend was that convergence rates were faster
when simulations were started with a high initial
number of ponds (6 million). Predictions of
recruitment differed the most with high levels of



J. Wildl. Manage. 68(4):2004

MODEL SELECTION IN ADAPTIVE MANAGEMENT e Conn and Kendall

1075

Table 1. Convergence times for predictor models when that predictor model was used to generate time series of midcontinent mallard
abundance. A priori models represent combinations of compensatory (S,) or additive (S,) mortality and strongly (Rg) or weakly (R,)
density-dependent recruitment. Convergence is defined as the first time the model weight for the correct model surpasses 0.95.

Predictor Proportion of time Proportion of
A priori uncertainty Convergence model weight <0.95 simulations
model level time? SE?2 after convergence? SE?2 not converging
ScRs 1 7.626 8.020 0.253 0.300 0.113
SiRs 1 5.223 4.154 0.033 0.114 0.005
ScRy 1 3.053 1.880 0.002 0.017 0.000
ScRw 1 6.408 4.236 0.012 0.039 0.000
ScRs 2 20.739 12.176 0.099 0.167 0.527
S\Rs 2 18.393 7.841 0.033 0.074 0.007
ScRy 2 8.243 2.516 0.002 0.008 0.000
SiRw 2 18.888 5.878 0.012 0.042 0.002
ScRs 3 33.250 9.322 0.062 0.107 0.960
SiRs 3 40.766 7.174 0.110 0.210 0.593
ScRy 3 14.063 2.907 0.002 0.008 0.000
SiRw 3 38.240 6.749 0.025 0.101 0.075
2 Conditional on simulation converging within 50 time steps.
ponds. Also, high levels A. Level 1 uncertainty
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Fig. 6. Kernel density estimates of predicted population size distributions of midcontinent mal-
lards for 1 time step under liberal harvest regulations, an initial population size estimate of 10
million mallards, and an initial spring ponds estimate of 2 million. A priori models represent
combinations of compensatory (S) or additive (S,) mortality and strongly (Rg) or weakly
(Ry) density-dependent recruitment.
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porating Level 2 uncertainty includes more variation than the a priori model. Model SR des-
ignates compensatory mortality and strong density dependence in recruitment.
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ate time series of midcontinent mallards abundance. Model SR designates compensatory
mortality and strong density dependence in recruitment.
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of uncertainty to predic-
tions led to increasingly
overlapping predictor
distributions for all 4
models (Fig. 6).

DISCUSSION

Perhaps not surprising-
ly, when the a priori
model for generating
population sizes was a
variant of 1 of the predic-
tor models, convergence
occurred fastest when ob-
served population sizes
occurred outside of the
range predicted by other
models in the model set.
In this case, more ex-
treme models such as
SRy and S,Ry, con-
verged the fastest, while
intermediate models such
as SRy, and SR were
slower to converge. In
particular, a heavier-tailed
distribution and similar
predictions over the
range of observed data
allowed model SRy, to
usurp relative credibility
from model SR (Fig. 6).
The fact that this phe-
nomenon occurred when
both too little and too
much uncertainty was
assumed about the system
indicates that model
selection in adaptive man-
agement may not be a
trivial matter, particularly
when alternative models
predict similar population
sizes under different
mechanisms (e.g., combi-
nations of density-depen-
dent recruitment and sur-
vival). In such cases,
employment of active
adaptive management
(Walters and Hilborn
1978, Walters and Holling
1990, Williams 1996) or

experimental manage-
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Table 2. Average predictor model weights for landmark simulation times of 3, 8, 15, 30, and 50 years when the partial compen-
satory survival (Sp) model is used to generate system states of midcontinent mallard abundance. In addition to partial compen-

sation, a priori models could include strongly (Rs) or weakly (R,,) density-dependent recruitment.

Predictor

A priori  uncertainty ~ Simulation Model S R¢ Model S,Rs Model SR, Model S,R,,

model level timestep X SE X SE X SE X SE

SpRs 1 3 0.266 0.332 0.406 0.371 0.065 0.149 0.263 0.288
SpRs 1 8 0.150 0.303 0.318 0.404 0.000 0.005 0.532 0.410
SpRs 1 15 0.058 0.201 0.204 0.370 0.000 0.000 0.739 0.394
SpRs 1 30 0.006 0.068 0.095 0.281 0.000 0.000 0.899 0.287
SpRs 1 50 0.000 0.000 0.060 0.230 0.000 0.000 0.940 0.230
SpRy, 1 3 0.146 0.263 0.104 0.200 0.364 0.382 0.385 0.362
SpRy 1 8 0.088 0.240 0.001 0.020 0.412 0.450 0.499 0.445
SpRy 1 15 0.014 0.107 0.000 0.000 0.402 0.467 0.585 0.467
SpRyw 1 30 0.000 0.000 0.000 0.000 0.351 0.465 0.649 0.465
SpRy 1 50 0.000 0.000 0.000 0.000 0.319 0.455 0.681 0.455
SpRg 2 3 0.294 0.140 0.316 0.163 0.117 0.120 0.273 0.129
SpRs 2 8 0.269 0.197 0.301 0.199 0.011 0.025 0.418 0.178
SpRs 2 15 0.202 0.203 0.230 0.225 0.000 0.001 0.568 0.228
SpRs 2 30 0.077 0.130 0.117 0.184 0.000 0.000 0.807 0.208
SpRs 2 50 0.019 0.064 0.046 0.121 0.000 0.000 0.935 0.134
SpRy 2 3 0.213 0.123 0.125 0.149 0.313 0.151 0.349 0.135
SpRyw 2 8 0.175 0.166 0.010 0.034 0.377 0.229 0.437 0.217
SpRy 2 15 0.075 0.129 0.000 0.000 0.411 0.276 0.514 0.264
SpRy, 2 30 0.009 0.042 0.000 0.000 0.391 0.316 0.600 0.313
SpRy 2 50 0.000 0.003 0.000 0.000 0.342 0.331 0.658 0.331

ment (Walters and Green 1997) appears neces-
sary to reduce confounding between the models.
In the case of mallards, new software (Lubow 1997)
has enabled practitioners to use active adaptive
optimization (Williams 1996, Williams et al. 2002)
to determine optimal harvest strategies. The

active adaptive optimization procedure explicitly
anticipates the gain in information that is expect-
ed to result from employment of each regulatory
alternative and incorporates the utility of this
knowledge into making better management deci-
sions. Thus, if the value of discriminating between

Table 3. Average predictor model weights for landmark simulation times of 3, 8, 15, 30, and 50 years when the logistic model for
density-dependent winter survival (S,) is used to generate system states of midcontinent mallard abundance. A priori models
could include stongly (Rg) or weakly (R,,) density-dependent recruitment.

Predictor

A priori uncertainty  Simulation Model S R¢ Model S,Rs Model SR, Model S,R,,

model level timestep X SE X SE X SE X SE

S,Rg 1 3 0.153 0.258 0.584 0.388 0.062 0.140 0.201 0.282
S,Rs 1 8 0.038 0.158 0.611 0.419 0.000 0.001 0.351 0.397
S,Rs 1 15 0.004 0.055 0.537 0.451 0.000 0.000 0.459 0.450
S,Rg 1 30 0.000 0.000 0.437 0.458 0.000 0.000 0.563 0.458
SRy 1 50 0.000 0.000 0.380 0.461 0.000 0.000 0.620 0.461
S, Ry 1 3 0.229 0.303 0.268 0.340 0.078 0.162 0.425 0.360
SRy 1 8 0.168 0.312 0.047 0.182 0.002 0.020 0.784 0.341
SRy 1 15 0.062 0.204 0.007 0.075 0.000 0.000 0.932 0.216
SRy 1 30 0.016 0.117 0.002 0.041 0.000 0.000 0.982 0.123
SRy 1 50 0.000 0.010 0.002 0.041 0.000 0.000 0.998 0.042
S,Rs 2 3 0.224 0.160 0.441 0.224 0.092 0.116 0.243 0.138
S,Rg 2 8 0.129 0.180 0.524 0.233 0.005 0.013 0.342 0.189
S,Rs 2 15 0.043 0.116 0.540 0.258 0.000 0.000 0.417 0.239
S,Rs 2 30 0.002 0.021 0.488 0.295 0.000 0.000 0.510 0.293
S,Rg 2 50 0.000 0.001 0.422 0.326 0.000 0.000 0.578 0.326
SRy 2 3 0.261 0.138 0.272 0.178 0.133 0.125 0.333 0.144
SRy 2 8 0.257 0.190 0.131 0.151 0.027 0.051 0.585 0.203
SRy 2 15 0.152 0.179 0.038 0.092 0.001 0.003 0.810 0.187
SRy 2 30 0.033 0.086 0.001 0.015 0.000 0.000 0.966 0.087
SRy 2 50 0.002 0.010 0.000 0.000 0.000 0.000 0.998 0.010
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models is high (in terms of the objective func-
tion), active optimization might help resolve prob-
lems with confounding models by probing into
regions of the state and decision space that are
not usually accessible (e.g., dictating a liberal or
moderate regulation in a year of small popula-
tion size). In this exercise, faster convergence
occurred when population sizes were high. Osten-
sibly, this was because the difference between
compensatory and additive model predictions
was the greatest when the population was harvest-
ed according to a liberal harvest package. A mod-
erate or restrictive harvest package likely would
be implemented with smaller population sizes.
The 4 predictor models we used embody ex-
treme hypotheses about processes underlying pop-
ulation dynamics. However, the functional form
that best approximates these processes may be dif-
ferent than specified in predictor models (Runge
and Johnson 2002). For the partial compensation
and logistic winter survival cases we investigated,
model selection largely favored predictor model
S, Ryy» which had heavier tails and predicted pop-
ulation sizes that were intermediate among other
predictor models (Fig. 6). Under the completely
compensatory phenomenological model, no
mortality is modeled for harvest rates <0.15
because of the assumption that increased survival
of other individuals offsets such losses. The
changes in winter survival postulated in the logis-
tic model for individuals surviving the hunting
season (Fig. 3) did not appear to be large enough
to promote convergence to a compensatory
model. However, the logistic model we employed
could have been parameterized differently and
also could have incorporated a component for
summer survival. Analyses of current large-scale
mallard data have not produced sufficient evi-
dence to support hypotheses of density-depen-
dent summer survival (W. L. Kendall, USGS, and
D. I. MacKenzie, Proteus Research and Consulting,
unpublished data). However, some confirmatory
evidence has been found for such an effect in the
past when twice-a-year banding programs permit-
ted direct estimation of summer survival (e.g.,
Nichols et al. 1982, Johnson et al. 1992). In gen-
eral, the power to test for seasonal density depen-
dence is low because yearly parameter estimates
are imprecise and density can affect harvest rates
as well as nonhunting survival (Smith etal. 1992).
Thus, different parameterizations of the logistic
model may have yielded different results.
Learning rates slow dramatically as more uncer-
tainty is assumed about the system, causing
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model-specific probability distributions for pre-
dicted population sizes to increasingly overlap.
Identifying the candidate predictor model most
likely to have given rise to the observed data takes
much longer in these scenarios. That is, if nature
is reasonably approximated by 1 of the predictor
models, assuming more uncertainty about the sys-
tem will make identification of the correct model
take longer. On the other hand, using a smaller
number of variance components than should be
included (e.g., assuming more knowledge about
the system than is realistic) can lead to rapid
change in model weights following particularly
bad predictions. In this case, learning appears to
consist of identifying the model or models that
have best explained population changes over a
short time period. Mathematical problems also can
occur with estimating probabilities in the extreme
tails of predictor distributions (e.g., 4 or 5 SD from
the mean) when insufficient sampling and process
errors are included in model predictions.

The fact that models S, Ry;and S, Rghad acquired
virtually all of the model weight by 2001 following
institution of mallard AHM in 1995 (U.S. Fish
and Wildlife Service 2001) is consistent with
analysis of the most recent banding data (Smith
and Reynolds 1992; J. E. Hines, USGS, unpublished
data). However, previous analyses had yielded con-
trary evidence for the mortality model most appro-
priate for mallards (e.g., Burnham and Anderson
1984, Nichols et al. 1984). Results from our simula-
tions may illuminate several possible causes for
convergence to additive mortality models. First,
because no individual model predicted well over all
years, the true model for population dynamics may
have a greater number of variance components
than any of the predictor models. This makes intu-
itive sense because quantities such as crippling loss
and nonhunting season survival should ultimately
be modeled as random variables instead of fixed
parameters. Second, the real-world biological fac-
tors determining population sizes may be best
approximated by a model that is not in the model
set, perhaps with a combination of hypotheses, dif-
ferent functional forms of hypotheses, or impor-
tant mechanisms that have not yet been elucidat-
ed. In light of simulation results, a reasonable
possibility is that model selection in this case
would favor model S;Ry,. A third possibility not
considered here, but potentially important, is
that the model set includes 1 model whose struc-
ture reasonably represents truth but whose para-
meters are estimated with bias. This issue was
raised and adjusted for in 2002 (U.S. Fish and
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Wildlife Service 2002) and produced model
weights that were not as extreme.

MANAGEMENT IMPLICATIONS

Results from these simulations indicate that
errors in model selection could have occurred in
mallard AHM as practiced from 1995 to 2001. Orig-
inal predictor model sets likely did not include
enough uncertainty components. The evolution of
model weights among AHM predictor models may
have been a real result of learning but could also be
explained by stochastic events occurring over a
wider scale than anticipated by any 1 predictor
model. For instance, random variation in natural
mortality could have perturbed population sizes
outside the range of a model’s predictions, even
if the recruitment and harvest mortality hypotheses
of that predictor model reasonably represented
reality. These concerns, along with others beyond
the scope of this study, have been addressed within
the mallard AHM community, most notably by
reformulation of the predictor model set in 2002.

Wildlife managers, along with any scientists en-
listed in the process, should give considerable
care to translating ecological hypotheses (e.g.,
recruitment is density dependent) into predictive
models (e.g., what should be the actual parame-
ter values under each model). These considera-
tions include uncertainty associated with each
parameter (i.e., sampling variablility of those esti-
mated from real data) and how those parameters
vary over time or space (i.e., process variation).
Our results illustrate some of these concerns,
indicating potential problems with model selec-
tion in certain adaptive management scenarios.
In addition to including all sources of uncertain-
ty, predictor distributions should all have a simi-
lar variance structure so that predictor models
with long-tailed distributions do not gain unfair
advantage in the model-selection process. While
difficult to parameterize in practice, wildlife and
fisheries managers should consider mechanistic
functions for density-dependent survival as alter-
natives to phenomenological models to better
represent uncertainty about the appropriate
functional form for population dynamics. Practi-
tioners of adaptive management also should con-
duct simulation experiments to determine possi-
ble complications and alternative explanations
for changes in model weight. Additional prob-
lems with model selection may be eliminated by
experimental perturbations of the system (Wal-
ters and Hilborn 1978, Walters and Holling 1990,
Carpenter et al. 1994), ideally within an active
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adaptive optimization (Williams 1996, Williams et
al. 2002) framework.
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Appendix A. Methods used to separate process and sampling error in recruitment functions of a priori models.

Skalski and Robson (1992) showed that

2
n(n-1)

Xj;k{COU(Rj,Rk) + Cou(R;, Ry) | F1),

B2 =c2+ L 3 E[Var(R,| F)] -
n ]:1 ]

where Fdenotes all of the information in nature’s
realization of the Rs (Link and Nichols 1994). If
unbiased estimates of sampling variance and
covariance are available, this equation can be re-
arranged to obtain an estimate of true temporal
variability given by

R 1 & - . 2
22 Ly g ) =
P=52-0 2 EIVar(R;| )] + 5=y

xj<2k E[Cov(R},R)) | F1,

(Link and Nichols 1994, Gould and Nichols
1998). Making an additional assumption that the
sampling covariance is zero, the process variation
can be estimated as

©2=52-1 S E[var (R | P). (1)
]:] P

3=

Recruitment estimates from 1970-1993 were used
to compute a mean squared error for each
recruitment model, which can be substituted
directly into Eq. (1). However, estimating the
remaining piece,

M=

X E[Var(R; | F)1,
J 1

requires some creativity, as direct estimates of
yearly sampling variances for fall age ratios are
not available. Instead, these fall age ratios are
determined by dividing raw age ratios (?)Tj) by par-
tial vulnerabilities to harvest (V), both of which
are determined by yearly parts collection surveys.
To compound problems, partial vulnerabilities
and associated sampling variances have tradition-
ally been estimated with respect to adult males.
To get an approximate estimate for sampling vari-
ances of partial vulnerabilities for young females
to adult females, we calculated the absolute vari-
ance of partial vulnerability to harvest for years
1961-1993. That is, we made the approximation

E[Var(V| F)] = Var(V).

We applied this approximation of sampling vari-
ance to all years, which introduced autocorrelation
into the variance structure, but we ignored this
problem in the interest of obtaining a somewhat
meaningful estimate of process error. Fortunately,
estimates of sampling variance were available for
raw fall age ratios of adult females to young females
over the years 1961-1993. We used a first-order Tay-
lor series approximation for the variance of a
ratio (Casella and Berger 1990) to compute

I::[Var(éﬂ F)] ~ E[Var(%| F)]

Process variance could then be estimated as
0.0059 and 0.0082 for the weakly density-depen-
dent recruitment model and strongly density-
dependent model, respectively.




